In mathematics, two functions are said to be topologically conjugate to one another if there exists a homeomorphism that will conjugate the one into the other. Topological conjugacy is important in the study of iterated functions and more generally dynamical systems, since, if the dynamics of one iterated function can be solved, then those for any topologically conjugate function follow trivially.
To illustrate this directly: suppose that f and g are iterated functions, and there exists an h such that
so that f and g are topologically conjugate. Then of course one must have
and so the iterated systems are conjugate as well. Here, denotes function composition.
Contents |
Let and be topological spaces, and let and be continuous functions. We say that is topologically semiconjugate to , if there exists a continuous surjection such that . If is a homeomorphism, then we say that and are topologically conjugate, and we call a topological conjugation between and .
Similarly, a flow on is topologically semiconjugate to a flow on if there is a continuous surjection such that for each , . If is a homeomorphism then and are topologically conjugate.
Topological conjugation defines an equivalence relation in the space of all continuous surjections of a topological space to itself, by declaring and to be related if they are topologically conjugate. This equivalence relation is very useful in the theory of dynamical systems, since each class contains all functions which share the same dynamics from the topological viewpoint. For example, orbits of are mapped to homeomorphic orbits of through the conjugation. Writing makes this fact evident: . Speaking informally, topological conjugation is a “change of coordinates” in the topological sense.
However, the analogous definition for flows is somewhat restrictive. In fact, we are requiring the maps and to be topologically conjugate for each , which is requiring more than simply that orbits of be mapped to orbits of homeomorphically. This motivates the definition of topological equivalence, which also partitions the set of all flows in into classes of flows sharing the same dynamics, again from the topological viewpoint.
We say that and are topologically equivalent, if there is a homeomorphism , mapping orbits of to orbits of homeomorphically, and preserving orientation of the orbits. In other words, letting denote an orbit, one has
for each . In addition, one must line up the flow of time: for each , there exists a such that, if , and if is such that , then .
Overall, topological equivalence is a weaker equivalence criterion than topological conjugacy, as it does not require that the time term is mapped along with the orbits and their orientation. An example of a topologically equivalent but not topologically conjugate system would be the non-hyperbolic class of two dimensional systems of differential equations that have closed orbits. While the orbits can be transformed each other to overlap in the spatial sense, the periods of such systems cannot be analogously matched, thus failing to satisfy the topological conjugacy criterion while satisfying the topological equivalence criterion.
There are two reported extensions of the concept of dynamic topological conjugacy:
1. Analogous systems defined as isomorphic dynamical systems
2. Adjoint dynamical systems defined via adjoint functors and natural equivalences in categorical dynamics[2][3].
This article incorporates material from topological conjugation on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.